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Abstract
We use a density matrix formalism to derive a kinetic theory for a quantum
gas. Generalized kinetic fields are introduced and, employing the Wigner
function, a certain hierarchy of quantum hydrodynamic (QHD) equations for
the corresponding macroscopic variables is obtained. We assert a maximum
entropy principle to obtain closure of the QHD system. For the explicit
incorporation of statistics a proper quantum entropy is analyzed in terms of
the reduced density matrix. The determination of the reduced Wigner function
for equilibrium and non-equilibrium conditions is found to become possible
only by assuming that the Lagrange multipliers can be expanded in powers of
h̄2. Quantum contributions are expressed in powers of h̄2 while classical results
are recovered in the limit h̄ → 0.

PACS numbers: 67.10.Jn, 89.70.Cf

1. Introduction

A rigorous derivation of a hydrodynamic (HD) model is a fundamental problem in statistical
mechanics. The solution stems from the construction of a given number of moments of
the particle distribution function. In this derivation, the main difficulty is identified in the
closure problem associated with the constraint that to solve a finite set of moment equations
the knowledge of higher order moments is necessary [1, 2]. In classical mechanics, the
introduction of a maximum entropy principle (MEP) has proven to be very fruitful in solving
the closure problem to any degree of approximation [2]. This is no longer the case in
quantum mechanics, apart from some partial attempts [3]. In the quantum MEP (QMEP),
the main difficulty rests on defining a proper quantum entropy for the explicit incorporation
of statistics into problems involving a system of identical particles. Furthermore, also the
quantum generalization of the corresponding Lagrange multipliers is an open problem. On
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the other hand, the availability of rigorous quantum HD (QHD) models is a demanding issue
for a variety of quantum systems, such as interacting fermionic and bosonic gases [4, 5],
quantized vortices [6], quantum turbulence [7], confined carrier transport in semiconductor
heterostrucures [8], nuclear physics [9].

The aim of this work is to develop a rigorous theoretical approach for constructing a
complete set of quantum balance equations and formulate a global quantum maximum entropy
principle to solve the corresponding closure problem. To this purpose, the main items of the
work will be the following: (i) the definition of the reduced Wigner function for a system of
identical particles. (ii) The development of the moments of the reduced Wigner function. (iii)
The formulation of the closure problem by a proper definition of a quantum entropy which
includes the particle undistinguishable principle. (iv) The introduction and use of quantum
Lagrange multipliers to determine the potentials associated with external constraints.

2. The generalized Wigner equation

We consider a given number N of identical particles introducing, in Fock space, the statistical
density matrix ρ with Tr(ρ) = 1 (we suppress the symbol ̂ to refer to operators acting in
Fock space) and the general Hamiltonian, with many-body interactions,

H =
∫

d3r �†(r)
[
− h̄2

2 m
∇2 + V (r)

]
�(r) +

R∑
s=2

1

s!

∫
d3r1 · · ·

∫
d3rs �†(r1) · · · �†(rs)

×V (r1, . . . , rs)�(rs) · · · �(r1), (1)

where, neglecting the spin degree of freedom, � is the particle field operator satisfying the
relations [�(r),�(r′)]± = [�†(r),�†(r′)]± = 0, [�(r),�†(r′)]± = δ(r − r′) and the upper
and lower signs refer to fermions and bosons, respectively.

Analogously, in the coordinate space representation we can define the reduced density
matrix [10] of a single particle 〈r|̂� |r′〉 = 〈�†(r′)�(r)〉 = Tr(ρ�†(r′)�(r)) that in an
arbitrary representation will take the form 〈ν |̂� |ν ′〉 = 〈

a
†
ν ′aν

〉 = Tr
(
ρ a

†
ν ′aν

)
being ν, ν ′ single

particle states, aν, a
†
ν ′ the annihilation and creation operators for these states and 〈· · ·〉 the

statistical mean value. By using this formalism [10], we define the reduced Wigner function

FW = 1

(2πh̄)3

∫
d3τ e− i

h̄
τ ·p〈�†(r − τ/2)�(r + τ/2)〉 (2)

obtaining for the momentum space distribution function
∫

d3rFW = 〈
a
†
pap

〉 = 〈Np〉 and,
analogously, the dual expression

∫
d3pFW = 〈�†(r)�(r)〉 = n(r), where 〈Np〉 is the

mean occupation number and n(r) is the quasi-particle numerical density, with Tr(̂�) = N.

By looking for a function M̃(r, p) in phase space that corresponds unambiguously to an
operator of a single particle M̂(̂r, p̂), we introduce the Weyl–Wigner transform W(M̂) =
M̃(r, p) = ∫

d3τ 〈r + τ/2|M̂|r − τ/2〉 e− i
h̄
τ ·p. Analogously, we define the inverse Weyl–

Wigner transform W−1(M̃) = 〈r|M̂|r′〉 = (2πh̄)−3
∫

d3p M̃((r + r′)/2, p) e
i
h̄

p·(r−r′). Thus,
�̃(r, p) = (2πh̄)3FW(r, p) and 〈r|̂� |r′〉 = W−1(̃�).

Following a usual script, in the generalized Hartree approximation, the equation of motion
for the reduced Wigner function takes the compact form [10]

ih̄
∂

∂t
FW(r, p) =

∫
Dξ [H̃(r′ + τ/2, p′ + φ/2) − H̃(r′ − τ/2, p′ − φ/2)]FW(r′, p′) (3)

where Dξ = d3 r ′d3p′ d3τ d3φ e
i
h̄

[τ ·(p′−p)+φ·(r−r′)] and H̃ is the phase function of a
single particle operator Ĥ = 〈H〉, H = −h̄2/2m∇2 + V (r) +

∑R−1
k=1 (1/k!)

∫
d3r1 · · ·∫

d3rk �†(r1) · · · �†(rk)V (r, r1, . . . , rk)�(rk) · · · �(r1).
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Without loss of generality, it is possible to expand the integrand of equation (3) as a
McLaurin series around τ = 0. Thus, by using the Fourier integral theorem, we obtain the full
gradient expansion to all orders in h̄ [11]:

∂FW

∂t
= −pk

m

∂FW

∂xk

+
∞∑
l=0

(i h̄/2)2l

(2l + 1)!

[
∂2l+1Veff

∂xk1 · · · ∂xk2l+1

] [
∂2l+1FW

∂pk1 · · · ∂pk2l+1

]
, (4)

where Einstein convention is used on the saturated indices and the effects of interactions are
entirely contained in the definition of Veff(r). We remark that in general the above expansion
can be performed only if Veff(r) is an analytical function in the whole region of interest; thus,
the presence of potential discontinuities cannot be treated with this equation. Accordingly,
if Veff(r) does not admit for a Taylor series expansion, then an integro-differential form of
the Wigner equation should be used [12, 13]. Finally, for h̄ → 0, we recover a kind of
Boltzmann–Liouville equation with an effective potential that includes all interaction effects.
The essential difference between classical and the quantum theory is, here, that in the first
case, Boltzmann–Liouville equation allows the violation of uncertainty relation in phase space,
while in the quantum case the expansion (4) allows us to obtain a non-local theory for the
system compatible with the uncertainty principle.

As a relevant application of this approach, we consider a Bose gas with many-body contact
interactions [14] and set V (r1, r2, . . . , rk) = ck−1

∏k−1
i=1 δ(ri − ri+1) for ∀ k � 2 to obtain

Veff(r) = V (r) +
R−1∑
k=1

ck

k!
g(k)(r, · · · , r︸ ︷︷ ︸

k times

) [n(r)]k, (5)

where g(k)(r, . . . , r) = 〈[�†(r)]k[�(r)]k〉/[n(r)]k is the k-order correlation function [15].
We stress that, by considering the explicit relation (5), all nonlinear phenomena imputable to
weak interactions between bosons can be expressed in terms of increasing powers of density.
The advantage of this approach will be evident in the corresponding QHD system. Indeed, all
closure relations implied by contact interactions are explicitly determined as known polynomial
functions of the field variable n(r). In this sense a theory based on equations (4) and (5) is a
first major result of the work because it can be applied to describe the same approximations
governed by a generalized Gross–Pitaevskii equation (see the appendix).

The above results can be formulated by including explicitly the spin degrees of freedom,
and equations (3) and (4) can be supplemented by other interaction terms. In this way the theory
can be used for a variety of physical systems, including metals, Fermi liquids [10], non-ideal
gases and plasmas [16]. Thus, for a Bose gas, the theory can be generalized introducing the
Boltzmann–Nordheim (BN) kinetic equation through the BBGKY hierarchy for the density
matrix when the dynamical correlations caused by collisions are supposed to be very well
localized both in space and time [17]. In this case, the solution of the coupled equations of
the type BN plus equations (4) and (5) should describe, to an higher level of approximation,
the dynamics of a Bose–Einstein condensate.

3. QHD models

Below we develop the extended three-dimensional QHD model associated with (4). We further
express the leading order correction to the classical models within an expansion in powers
of order h̄2, hereafter labeled as QHD2. By recalling that the expectation value of M̂(̂r, p̂)

can be expressed by the global quantity 〈M̂(̂r, p̂)〉 = ∫∫
d3p d3rM̃(r, p)FW(r, p, t), we

define the macroscopic local moment M of M̂ by means of the local relations M(r, t) =∫
d3p M̃(r, p) FW(r, p, t). As in classic extended thermodynamics [1], by introducing the

3
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group velocity ui = pi/m, we define the mean velocity vi = n−1
∫

d3p ui FW , the peculiar
velocity ũi = ui − vi and the quantity ε̃ = mũ2/2. Thus, we consider the set of traceless
kinetic fields3 M̃A = {̃

εs, ε̃s ũi1 , . . . , ε̃
s ũ〈i1 ũi2 · · · ũir 〉

}
and the corresponding set of central

moments MA(r, t) = {M(s),M(s)|i1 , . . . , M(s)|〈i1···ir 〉} where, by construction, it is M(0)|i1 = 0,

and

M(s)|〈i1i2···ir 〉 =
∫

d3p ε̃s ũ〈i1 ũi2 · · · ũir 〉 FW (6)

with s = 0, 1, . . . ,N and r = 1, 2, . . . , M. In particular, by using a finite but arbitrary number
of scalar and vectorial kinetic fields M̃A = {̃εs, ε̃s ũi}, we obtain in correspondence the set of
scalar and vectorial central moments MA = {M(s),M(s)|i}, with s = 0, . . . ,N . Accordingly,
for N = 0, as set of macroscopic variables we get the numerical density n = M(0) and the
velocity vi. For N = 1 we get in addition M(1) and M(1)|i , which admit a direct physical
interpretation being M(1) = 3/2P and M(1)|i = qi , respectively, the internal energy density
(with P the pressure) and the heat flux density. By contrast, for N > 1, as macroscopic
variables we also consider some scalar and vectorial moments of higher order. Multiplying
(4) by M̃A, integrating over p we exactly determine the corresponding set of quantum balance
equations to all orders of h̄. In particular, following this approach, we can formulate a theory
that is consistent up to the first quantum correction. Thus, the moments {vi,MA} must satisfy
the extended QHD system up to terms of order h̄2 (QHD2) and the balance equations can be
expressed explicitly as

ṅ + n
∂vk

∂xk

= 0, (7)

v̇i +
1

n

∂M(0)|ik
∂xk

+
1

m

∂Veff

∂xi

= 0, (8)

Ṁ(s) + M(s)

∂vk

∂xk

+
∂M(s)|k

∂xk

+ s m M(s−1)|ik
∂vi

∂xk

− s
m

n
M(s−1)|i

∂M(0)|ik
∂xk

= h̄2

24
s(s − 1)

×
{
(s − 2)

∂3Veff

∂x〈i∂xj ∂xk〉
M(s−3)|〈ijk〉 +

3

5

(1 + 2s)

m

∂3Veff

∂xr∂xr∂xk

M(s−2)|k

}
,

(9)

Ṁ(s)|i + M(s)|i
∂vk

∂xk

+
∂M(s)|ik

∂xk

+ smM(s−1)|ijk

∂vj

∂xk

+ M(s)|k
∂vi

∂xk

− M(s)

n

∂M(0)|ik
∂xk

− sm
M(s−1)|ij

n

∂M(0)|jk

∂xk

= h̄2

24
s

{
(s − 1)(s − 2)

∂3Veff

∂xr∂xj ∂xk

M(s−3)|〈rjki〉

+
3(s − 1)

m

(3 + 2s)

7

(
∂3Veff

∂xr∂xr∂xk

M(s−2)|〈ki〉 +
∂3Veff

∂x〈k∂xr〉∂xi

M(s−2)|〈kr〉

)
+

(4s2 + 8s + 3)

5 m2

∂3Veff

∂xr∂xr∂xi

M(s−1)

}
with s = 1, . . . ,N . (10)

We remark that, by considering the complete expansion (4), it follows that only a finite
number of terms in powers of h̄2 remains in each QHD scalar and vectorial equation, and
the first quantum correction, on the right-hand side, involves the third derivative of Veff .
The set (7)–(10) is a second major result of the work and, for h̄ → 0, it recovers the
classic form of extended thermodynamics [1, 18]. However, for assigned expressions of Veff ,

3 A〈i1···in〉 is the traceless symmetric part of tensor Ai1···in .

4
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the predictive power and convergence properties of this system should be investigated via
numerical calculations.

The previous set of equations contains unknown constitutive functions which,
through (6), are represented by the central moments of higher order HA =
{MN+1, M(s)|〈ij〉, M(l)|〈ijk〉, M(p)|〈ijqk〉} with s = 0, . . . ,N ; l = 0, . . . ,N − 1 and p =
0, . . . ,N − 3.

In general, the closure problem of a set of balance equations is tackled using the QMEP
formalism [3].

4. The QMEP approach

In order to take into account ab initio the Bose and Fermi statistics, we follow the Landau
strategy [19]. Thus, for a non-interacting system in non-equilibrium conditions, the quantum
entropy, for the whole system, can be determined in terms of the occupation numbers in the
form S = −kB

∑
ν y[〈Nν〉 ln 〈Nν〉 ± (1 ∓ 〈Nν〉) ln (1 ∓ 〈Nν〉)] where kB is the Boltzmann

constant, 〈Nν〉 = 〈a†
νaν〉/y, y = (2s̃ + 1), is the spin degeneration and the upper and lower

signs refer to fermions and bosons, respectively. If we consider the Schrodinger equation of a
single particle [Ĥ(r) − Eν]ϕν(r) = 0, then, in stationary conditions, both the reduced density
matrix �̂ and any operator �̂(̂�) are diagonal in the base ϕν . Thus, introducing as a function
of reduced density matrix �̂ the following quantity:

�̂(̂�) = �̂

{
ln

(
�̂

y

)
± y �̂−1

(̂
I ∓ �̂

y

)
ln

(̂
I ∓ �̂

y

)}
, (11)

with Î the identity, we have 〈ν |̂� |ν ′〉 = 〈
a†

νaν

〉
δνν ′ and 〈ν|�̂(̂�)|ν ′〉 = y[〈Nν〉 ln 〈Nν〉

±(1 ∓ 〈Nν〉) ln(1 ∓ 〈Nν)]δνν ′ . Consequently, by generalizing existing definitions [20], the
Bose or Fermi statistics can be implicitly taken into account by defining the quantum entropy,
for the whole system, in terms of the functional of the reduced density matrix

S(̂�) = −kB Tr(�̂(̂�)), (12)

where kB is the Botzmann constant and �̂(̂�) is given by (11). To explain the QMEP approach
in the space of phase, we introduce the corresponding phase function �̃(r, p) = W(�̂),

rewriting (12) as S(̂�) = −kB (2πh̄)−3
∫∫

d3p d3r W(�̂), and we search the extremal value
of entropy subject to the constraint that the information on the physical system is described
by MA(r, t). To this purpose, we consider the new global functional [3]

S̃ = S −
∫

d3r

{
N∑

A=1

λ̃A

[∫
d3p M̃A FW − MA

]}
(13)

λ̃A = λ̃A(r, t) being the local Lagrange multipliers to be determined. It is possible to show
that the solution of the constraint δS̃ = 0 implies

�̂ = y

{
exp

[
W−1

(
N∑

A=1

λA(r, t)M̃A

)]
± Î

}−1

(14)

with λA = λ̃A/kB . Equation (14) is a third major result of the work, and the reduced Wigner
function takes the form

FW = 1

(2πh̄)3
W (̂�[λA(r, t),M̃A]). (15)

We stress that, to take into account the detailed kinetics of the interactions, we consider the
above approach in a dynamical context. Indeed, by itself the QMEP does not provide any

5
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information about the dynamic evolution of the system, but offers only a definite procedure
for the construction of a sequence of approximations for the non-equilibrium Wigner function.
To obtain a dynamical description, it is necessary (i) to know a set of evolution equations for
the constraints that includes the microscopic kinetic details, (ii) to determine the Lagrange
multipliers in terms of these constraints. In this way, the QMEP approach implicitly includes
all the kinetic details of the microscopic interactions between particles. Thus, from the
knowledge of the functional form (14) and (15) of the reduced Wigner function, we use (4)
to obtain a set of equations for the constraints. This set completely represents the closed
QHD2 model (7)–(10) in which all the constitutive functions are determined starting from
their kinetic expressions. Thus, for a given number of moments MA, we can consider a
consistent expansion around h̄ of the Wigner function. In this way we separate classical from
quantum dynamics, and obtain order by order correction terms. In particular, by using the
Moyal formalism, one can prove [12, 13, 21] that the Wigner function, and hence the central
moments, can be expanded in even power of h̄:

FW =
∞∑

k=0

h̄2kF (2k)
W , MA =

∞∑
k=0

h̄2kM
(2k)
A . (16)

With this approach, the dynamics of the system is described by resolving, order by order, a
closed QHD set of balance equations for the moments {MA(r, t)}. To this end the Lagrange
multipliers λA must be determined by inverting, order by order, the constraints

MA = 1

(2πh̄)3

∫
d3p M̃A W (̂�[λB(r, t),M̃B]). (17)

The inversion problem can be solved only by assuming that the Lagrange multipliers also
admit for an expansion in even powers of h̄

λA = λ
(0)
A +

∞∑
k=1

h̄2k λ
(2k)
A . (18)

With these assumptions, and using (14) and (15), we succeed in determining the following
expression for FW :

FW = ỹ

e� ± 1

{
1 +

∞∑
r=1

h̄2rP ±
2r

}
, (19)

where ỹ = y/(2πh̄)3,� = ∑
λA M̃A and the non-local terms P ±

2r are expressed by recursive
formulas.

(19) is a fourth major result of the work. By considering terms up to first order in the
quantum correction, the Lagrange multipliers are obtained as solutions of (17). In this case,
MA must satisfy the QHD2 system (7)–(10). From the knowledge of the Lagrange multipliers,
both the Wigner function and the constitutive functions HA can be determined explicitly.

5. Some examples of the QMEP approach

By considering only the first two terms of (19), we decompose the Lagrange multipliers in the
local equilibrium and non-equilibrium parts, � = α+β ε̃+

∑
�A M̃A, {α(r, t), β(r, t)} being

the non-vanishing Lagrange multipliers of local equilibrium, and �A(r, t) the non-equilibrium
Lagrange multipliers. Thus, by taking an expansion up to the first order with respect to the
deviations from the local equilibrium configuration FW |E , we obtain a theory limited to states

6
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near local equilibrium, being

FW |E = ỹ
[
L±

(0) + h̄2P
±(0)
2

]
FW |NE = ỹ

[
L±

(1) + h̄2P
±(1)
2

] N∑
l=0

{
�(l)ε̃

l + �(l)|i ε̃l ũi

}
,

where the functions L±
(n) are given by

L±
(s) = ds

dαs

{
1

eα+βε̃ ± 1

}
.

For the sake of simplicity we assume that non-local effects are imputable only to the spatial
derivatives of density n; thus, the quantum correction terms P

±(r)
2 (with r = 0, 1) are expressed

in the form

P
±(r)
2 = 1

12m

1

kBT

{[
L±

(3+r)Q
(1) + 9L±

(2+r)Q
(2)
]

+
m

kBT
L±

(3+r)

[
Q(2)ũ2 + Q〈ij〉ũ〈i ũj〉

]}
+ O(h̄2),

where T is an effective temperature and the non-local quantities {Q(k), Q〈ij〉} are explicitly
reported in the appendix. With this approach we can invert, order by order, the constrains
(17) determining explicitly the Lagrange multipliers and consequently the closure relations
for the system (7)–(10). Thus, for example, by considering the QHD2 obtained for N = 0, 1
we determine the following closed systems.

For N = 0, we recover the usual quantum drift-diffusion model with the balance
equations (7) and (8) for the macroscopic variables {n, vi}, M(0)|ik = M(0)|〈ik〉 + P/m δik

being the unknown constitutive function. In this case the effective temperature T = T0 is
necessarily constant (with β = (kB T0)

−1), the pressure P and the traceless tensor M(0)|〈ik〉
being determined by relations

P = 2

3
n
I±

4

I±
2

{
kB T0 +

h̄2

8m

[
1

4

(
I±
−2

I±
4

+
I±
−4

I±
2

)
Q(1) +

(
2
I±

0

I±
4

+
I±
−2

I±
2

)
Q(2)

]}
+ O(h̄4) (20)

M(0)|〈ik〉 = − h̄2

12

n

m2

I±
0

I±
2

Q〈ik〉 + O(h̄4), (21)

where, in general, all statistics information is contained, for any value of α, in the Fermi and
Bose integral functions I±

n (α) (see the appendix) while the non-locality is expressed by terms
{Q(k), Q〈ij〉}. We remark that, for α 
 1, as a particular case, we obtain the well-known
results determined in the framework of the Boltzmann statistic for the quantum drift-diffusion
model. Thus, we have I±

n (α) ≈ (1/2) � [(n + 1)/2] exp(−α) and we obtain

M(0)|ik = n

m

{
kBT0δik − h̄2

12m

∂2 ln n

∂xi∂xk

}
+ O(h̄4).

It is easy to verify that, by introducing the usual Bohm quantum potential QB =
−(h̄2/2m

√
n)√

n, we recover the known closure relation, for nondegenerate gases, [22]

∂M(0)|ik
∂xk

= kBT0

m

∂n

∂xi

+
n

3m

∂QB

∂xi

+ O(h̄4).

For N = 1, we consider the QHD2 system (7)–(10) for the macroscopic variables
{n, vi, P, qi}, which admits for a direct physical interpretation, the pressure being P =
2/3 M(1) and the heat flux density qi = M(1)|i . Accordingly, we find the balance equations

7
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∂n

∂t
+

∂n vk

∂xk

= 0, (22)

∂vi

∂t
+ vk

∂vi

∂xk

+
1

n

∂

∂xk

{
M(0)|〈ik〉 +

P

m
δik

}
+

1

m

∂Veff

∂xi

= 0, (23)

∂P

∂t
+

∂

∂xk

{
P vk +

2

3
qk

}
+

2

3
P

∂vk

∂xk

+
2

3
m M(0)|〈ik〉

∂vi

∂xk

= 0, (24)

∂qi

∂t
+

∂

∂xk

{
qi vk + M(1)|〈ik〉 +

2

3

1

m
M(2) δik

}
+ m M(0)|〈ijk〉

∂vj

∂xk

− 5

2

P

n

∂

∂xk

×
{
M(0)|〈ik〉 +

P

m
δik

}
− m

n
M(0)|〈ij〉

∂

∂xk

{
M(0)|〈jk〉 +

P

m
δjk

}
+

2

5
qi

∂vk

∂xk

+
2

5
qk

∂vk

∂xi

+
7

5
qk

∂vi

∂xk

= h̄2

8m2
n

∂3Veff

∂xk∂xk∂xi

. (25)

In this case, the effective temperature is expressed by means of the equation kB T =
(3 P/2 n)

(
I±

2

/
I±

4

)
, and the constitutive functions HA = {M(0)|〈ik〉,M(1)|〈ik〉,M(0)|〈ijk〉,M(2)}

will be given through the general relations

M(0)|〈ik〉 = − 1

12

h̄2

m2
n
I±

0

I±
2

Q〈ik〉 + O(h̄4), (26)

M(1)|〈ik〉 = − 7

12

h̄2

m2
n kB T Q〈ik〉 + O(h̄4), (27)

M(0)|〈ijk〉 = 3

4

h̄2

m2

�

kB T
q〈i Q〈jk〉〉 + O(h̄4), (28)

M(2) = n
I±

6

I±
2

(kB T )2

{
1 +

h̄2

12 m

1

kB T

[
ζ1 Q(1) + ζ2 Q(2)

]}
+ O(h̄4), (29)

where the coefficients {�, ζ1, ζ2} are given in the appendix. We remark that the closure
relations (26)–(29) are valid for arbitrary values of α being expressed in terms of Fermi
and Bose integral functions. Also in this case, for α 
 1 we obtain, in the framework of
Boltzmann statistic, P = n kB T and the following simplified non-local closure relations for
nondegenerate gases:

M(0)|〈ik〉 = − 1

12

h̄2

m2
n

∂2 ln n

∂x〈i∂xk〉
+ O(h̄4)

M(1)|〈ik〉 = − 7

24

h̄2

m2
nkBT

∂2 ln n

∂x〈i∂xk〉
+ O(h̄4)

M(0)|〈ijk〉 = −1

5

h̄2

m2

1

kBT
q〈i

∂2 ln n

∂x〈j ∂xk〉〉
+ O(h̄4)

M(2) = 15

4
n (kBT )2 + O(h̄4).

6. Conclusion

The QMEP is here proposed as a rigorous, non-arbitrary procedure that can be employed when
it becomes necessary to treat systems in partially specified quantum mechanical states. In this

8
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respect we have shown that (a) by introducing the generalized quantum entropy (11) and (12),
we incorporate the quantum statistics into problems involving a system of identical particles.
(b) By using the Wigner representation we formulate a QMEP, which requires the consistent
introduction of quantum Lagrange multipliers, to obtain a non-local theory for the system. (c)
We determine a closed QHD for the macroscopic variables used as constraints in the QMEP
approach. (d) In the limit h̄ → 0, we recover λ

(0)
A = λ

(0)
A

(
M

(0)
B

)
and F (0)

W obtained in the
classic MEP approach [1] for a fermions or bosons system.
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Appendix A.

We consider the generalized Gross–Pitaevskii equation with nonlinear terms of the odd type:

ih̄
∂ϕ(r, t)

∂t
= 〈r|ĤL|ϕ〉 +

R−1∑
j=1

uj |ϕ(r, t)|2j ϕ(r, t), (A.1)

where R � 2, ĤL = p̂2/2m + V̂ describes the linear dynamics and uj describe a many-
body interaction within the mean-field approximation. By introducing the reduced Wigner
function in terms of the wavefunction ϕ(r, t), we obtain FW = (2πh̄)−3

∫
d3τ e− i

h̄
τ ·p ϕ∗(r −

τ/2, t)ϕ(r + τ/2, t). To obtain the generalized Wigner equation, we calculate

∂FW

∂t
= 1

(2πh̄)3

∫
d3τ e− i

h̄
τ ·p
[
∂ϕ∗(r − τ/2, t)

∂t

×ϕ(r + τ/2, t) + ϕ∗(r − τ/2, t)
∂ϕ(r + τ/2, t)

∂t

]
, (A.2)

and using (A.1) we have ∂ϕ/∂t = ∂ϕ/∂t |L + ∂ϕ/∂t |NL, where ∂ϕ/∂t |L = 〈r|ĤL|ϕ〉/ih̄
describes the single particle linear dynamics while the nonlinear part is expressed by

∂ϕ

∂t

∣∣∣∣
NL

= 1

ih̄

R−1∑
j=1

uj |ϕ(r, t)|2j ϕ(r, t). (A.3)

By inserting the term ∂ϕ/∂t |L in (A.2), we describe the single particle linear dynamics. Thus,
we have the linear part ∂FW/∂t |L expressed by an expansion analogous to relation (4) where
Veff is replaced by the potential V (r). Analogously, by inserting (A.3) in (A.2), we obtain the
term which describes the nonlinear dynamics:

∂FW

∂t

∣∣∣∣
NL

= i/h̄

(2πh̄)3

R−1∑
j=1

uj

∫
d3τ e− i

h̄
τ ·p [Fj (r − τ/2, t)

− Fj (r + τ/2, t)
] ∫

d3p′ e
i
h̄
τ ·p′FW(r, p′, t),

where ϕ∗(r−τ/2, t) ϕ(r+τ/2, t) = ∫
d3p′ e

i
h̄

τ ·p′FW and Fj (r±τ/2, t) = |ϕ(r ± τ/2, t)|2j .
By expanding the quantities Fj (r ± τ/2, t) in series around τ = 0, and assuming that all

9
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derivatives of FW vanish when r, p → ∞, we find

∂FW

∂t

∣∣∣∣
NL

= 1

(2πh̄)3

R−1∑
j=1

uj

∞∑
l=0

(ih̄/2)2l

(2l + 1)!

∫
d3τ e− i

h̄
τ ·p

×
{

∂2l+1Fj (r, t)

∂xk1 · · · ∂xk2l+1

∫
d3p′ ∂2l+1FW(r, p′, t)

∂p′
k1

· · · ∂p′
k2l+1

e
i
h̄

τ ·p′
}

. (A.4)

Thus, by using the Fourier integral theorem, the nonlinear contribute (A.4) takes the following
form:

∂FW

∂t

∣∣∣∣
NL

=
∞∑
l=0

(ih̄/2)2l

(2l + 1)!

{
∂2l+1∑R−1

j=1 uj [n(r, t)]j

∂xk1 · · · ∂xk2l+1

}{
∂2l+1FW(r, p, t)

∂pk1 · · · ∂pk2l+1

}
, (A.5)

where use is made of the property Fj (r, t) = [n(r, t)]j .
If ∂FW/∂t = ∂FW/∂t |L+∂FW/∂t |NL, the full gradient expansion of the Wigner equation

will take, to all order of h̄, the form reported in (4) with

Veff(r) = V (r) +
R−1∑
k=1

uk [n(r)]k. (A.6)

We remark that for R = 2 (Gross–Pitaevskii equation) relation (A.6) coincides exactly
with (5). Analogously, by considering (5) for R > 2, a reasonable description of the low-
energy dynamics can be given assuming values approximatively constant for the remaining
correlation functions (see section 7.6, in [15]). Thus, also in this case (A.6) can be determined
as a particular case of (5).

Closure relations. We define the Fermi and the Bose integral functions for s � 0:

I±
s (α) =

∫ +∞

0

xs

exp(α + x2) ± 1
dx

satisfying the differentiation property

dr I±
s (α)

dαr
= (−1)r

�
(

s+1
2

)
�
(

s+1
2 − r

)I±
s−2r (α)

that is also used to extend the definition of I±
s (α) to s < 0.

The non-local terms {Q(1), Q(2), Q〈ij〉} are expressed by

Q(1) = −2

(
I±

2

I±
0

)2 (
∂ ln n

∂xk

)2

,

Q(2) = 1

3

I±
2

I±
0

{[
1 +

I±
2

I±
0

I±
−2

I±
0

](
∂ ln n

∂xk

)2

+
∂2 ln n

∂xk∂xk

}

Q〈ij〉 = I±
2

I±
0

{[
1 +

I±
2

I±
0

I±
−2

I±
0

]
∂ ln n

∂x〈i

∂ ln n

∂xj〉
+

∂2 ln n

∂x〈i∂xj〉

}
Accordingly, the coefficients {�, ζ1, ζ2}, contained in the constitutive functions (28) and (29),
are given by relations

� = 27
(
I±

2

)2 − 5I±
0 I±

4

25
(
I±

4

)2 − 21I±
2 I±

6

, ζ1 = −3

8

[
I±
−4

I±
2

+ 2
I±
−2

I±
4

+ 5
I±

0

I±
6

]

ζ2 = −3

2

[
I±
−2

I±
2

+ 4
I±

0

I±
4

− 5
I±

2

I±
6

]
.
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